UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southwest Fisheries Science Center 8604 La Jolla Shores Drive La Jolla, CA 92037 23 July 2005 #### FINAL CRUISE INSTRUCTIONS NOAA Ship: David Starr Jordan Cruise Number: DS-05-07 SWFSC Cruise Number: 1628 Cruise Dates: 30 July to 07 December 2005 Cruise Title: Collaborative Survey of Cetacean Abundance and the Pelagic Ecosystem (CSCAPE) Study Area: United States West Coast waters <u>Itinerary</u>: Leg 1 of the cruise will be conducted aboard the NOAA Ship *McArthur II* (AR-05-06). Legs 2 through 7 will be conducted aboard the NOAA Ship *David Starr Jordan*. Separate instructions are available specific to the *McArthur II*. Tracklines for Legs 2 through 4 are included at the end of this document in Appendix 1 and 2. <u>Sponsoring Institutions</u>: Protected Resources Division, Southwest Fisheries Science Center, (NMFS, NOAA); Olympic Coast National Marine Sanctuary, Cordell Banks National Marine Sanctuary, Gulf of the Farallones National Marine Sanctuary and Monterey Bay National Marine Sanctuary (NOS, NOAA). Cruise Description and Objectives: The CSCAPE 2005 cruise is a collaboration between the National Marine Fisheries Service and the National Marine Sanctuary Program to assess the abundance and distribution of marine mammals and to characterize the pelagic ecosystem off the U.S. West Coast. The primary objective is to conduct a marine mammal assessment survey out to a distance of approximately 300 nautical miles, with additional fine-scale surveys within the NMS boundaries. A secondary objective is to characterize the pelagic ecosystem within the study area, through the collection of underway and station-based physical and biological oceanographic sampling, studies of mid-trophic level organisms (using net sampling and acoustic backscatter methods) and research on non-protected apex predators (seabirds). A final objective is to conduct biopsy sampling and photo-identification studies of cetacean species of special interest. <u>Itinerary</u>: The principal study area includes the U.S. West Coast Exclusive Economic Zone (EEZ) – Washington, Oregon, and California coastal waters out to a distance of approximately 300 nautical miles. The survey will be divided into two sampling strata: 1) a grid of predetermined tracklines to obtain coarse coverage of the entire study area, 2) a separate set of parallel or zigzag lines to obtain finer-scale coverage within waters of the West Coast National Marine Sanctuaries. Sample tracklines are given in Figure 1; specific waypoints will be provided. Tracklines may need to be modified prior to or during the cruise due to weather or other considerations. Chief Scientist: Dr. Karin Forney, SWFSC (831) 420-3908 # PLAN OF OPERATIONS # 1.0 DAYLIGHT OPERATIONS Weather permitting, visual watches for marine mammals and seabirds will be conducted by observer teams on the flying bridge during all daylight hours (from sunrise to sunset). The Commanding Officer shall ensure that the flying bridge work area is smoke-free at all times when marine mammal or seabird observers are on watch. 1.1 Cetacean Survey - Line-transect survey methods will be used to collect abundance data. At the beginning of each day search effort should start on the trackline. The *David Starr Jordan* should travel at 10 knots (through the water) along the designated trackline. While on search effort, if the ship's speed through the water should deviate from this by more than one knot, the bridge personnel will notify the mammal team on watch or the Cruise Leader. A daily watch for cetaceans will be maintained on the flying bridge during daylight hours (approximately 0600 to 1900) by 6 mammal observers. Each observer will work in 2-hour rotations, manning each of the following 3 stations on the flying bridge for 40 minutes: a port side 25x150 binocular station, a center-line data recorder position, and a starboard 25x150 binocular station. An "independent observer" may keep a separate watch of animals sighted during the cetacean survey operations, to be compared later with the observer team's data. 1.1.1 Logging of Data - A log of observation conditions, watch effort, sightings and other required information will be entered into a computer, hooked up to the ship's GPS (for course, speed and position information) and SCS (for weather and heading information). If the SCS goes down for any reason, the ship must manually restart the WINDACS_DSJ event in addition to the other events. Please note that it is very important that all science computers be connected to the same ship's GPS. 1.1.2 Breaking Trackline - On sighting a marine mammal school or other feature of biological interest, the Cruise Leader or marine mammal observer team on watch may request that the vessel be maneuvered to approach the school or feature for investigation. When the ship approaches a school of dolphins, the observers will make independent estimates of school size. Biopsy and photographic operations may commence from the bow, based on directions from the Cruise Leader or Senior Marine Mammal Observers. In some instances, the Cruise Leader will request the deployment of a small boat for biopsy, photographic or other operations (see 1.3). It may occasionally be necessary to divert the ship's course from the established trackline during regular effort due to glare or adverse sea conditions. Under these circumstances, the ship may divert up to 30 degrees from the established course. This deviation may continue until the ship is 5 nm from the trackline, at which point the ship should turn back toward the trackline. 1.1.3 Dive-Interval Studies - Sightings of deep-diving whales will prompt diveinterval studies, at the discretion of the Cruise Leader. The collection of dive-interval data is necessary to produce sightability correction factors for those species that spend a considerable amount of time diving. This will help determine how long these species of whales stay under water, for more accurate population estimates. The observer team on watch will start the diveinterval computer program, and will request that the vessel approach the whales targeted for this experiment. 1.1.4 Resuming Effort - When the observers have completed scientific operations for the sighting, the ship will resume the same course and speed as prior to the sighting. If the pursuit of the sighting has taken the ship more than 5 nm from the trackline, the observers should be notified. The Cruise Leader or Senior Marine Mammal Observers may request that, rather than proceed directly toward the next waypoint, the ship take a heading of 20 degrees back toward the trackline. 1.2 Seabird Survey - Visual surveys of seabirds will be conducted from the flying bridge during daylight hours by two seabird observers. A log of sighting conditions, effort, sightings and other required information will be entered into a computer interfaced with the ship's GPS (for course, speed and position information) and SCS (for weather and heading information). Please note that it is very important that all science computers be connected to the same ship's GPS. Seabird observers will use handheld and 25x150 binoculars. 1.3 Small Boat Work - A small boat may be necessary for biopsy sampling or photography. Deployment will be requested by the Cruise Leader on an opportunistic basis during all daylight hours, possibly multiple times in a single day, providing the Commanding Officer concurs that operating conditions are safe. Unless the Commanding Officer allows otherwise, the small boat will remain within sight and radio contact at all times while deployed. With the exception of the small boat and required safety gear, all necessary gear will be furnished by the scientific party. 1.4 Biopsy Sampling - Biopsy samples for genetic analyses of cetaceans will be collected on an opportunistic basis. Necessary permits will be present on the vessel. The animals to be sampled will be approached by the research vessel during normal survey operations, will approach the vessel on their own or will be approached by a small boat. Samples will be collected, from animals within 10 m to 30 m of the bow of the vessel, using a dart fired from a crossbow or rifle. With the exception of the small boat and safety gear, all necessary gear will be furnished and operated by the scientific party. 1.5 Photography - Photographs of marine mammals will be taken on an opportunistic basis. These will be used to study social behavior and movement patterns of identified individuals, and to study geographic variation. Necessary permits will be present on the vessel. The animals to be photographed will be approached by the research vessel during normal survey operations, will approach the vessel on their own, or will be approached by a small boat. With the exception of the small boat and safety apparel, all necessary gear will be furnished by the scientific party. 1.6 Collection of Fish - Fish will be collected on an opportunistic basis at the discretion of the Cruise Leader. While underway, trolling gear will be used when conditions permit. While stationary, hook-and-line gear will be used. Fish will be measured, sexed, and stomach contents will be examined and recorded by scientific personnel. The Cruise Leader will be responsible for the disposition of the catch, in accordance with NOAA Administrative Order 202-735B, dated January 9, 1989. <u>1.7 Collection of Jellyfish Samples</u> – Jellyfish and other gelatinous plankton will be collected opportunistically for leatherback turtle dietary studies. Jellyfish will be collected using dip nets, during scheduled bongo tows or from the small boat. Samples will be frozen for future stable isotopic analysis. 1.8 Salvage of Marine Mammals and Birds - Marine mammal body parts and/or birds may be salvaged on an opportunistic basis at the discretion of the Cruise Leader. This
includes whale and dolphin ivory and carcasses, and whole bird specimens. In the event that this occurs, scientific freezer space will be needed to store the salvaged material. Permits to salvage and import marine mammal parts and birds will be present on the vessel. All marine mammal specimens obtained will be archived at the SWFSC but may be released on extended loan to recognized research institutions according to existing guidelines. All bird specimens will be donated to the San Diego Natural History Museum. 1.9 Acoustics -The scientific EK-500 depth sounder will be operated at 38, 120 and 200 KHz and interfaced to a data acquisition system to estimate micronekton biomass between 0 and 500 m. The vessel's EQ-50 depth sounder may be used at the discretion of the Commanding Officer, but will normally remain off while underway. The ship shall inform the Cruise Leader of any use of the vessel's EQ-50, as it interferes with the signals received on the scientific EK-500. Its use will be continuous. 1.9.1 ADCP - The ship's ADCP should run continuously and be logged to a data acquisition system. Complete system settings will be provided by the oceanographer, but will include 5-minute averaging of currents, AGC and 4 beam returns in 60 8-meter bins. 1.9.2 Sonobuoys - Sonobuoys may be deployed periodically from either the *Jordan* or a small boat on an opportunistic basis, at the discretion of the Cruise Leader. With the exception of the small boat, all of the necessary equipment will be supplied and operated by scientific personnel. <u>1.9.3 Bow Hydrophone</u> - A hydrophone mounted on the bow may be activated by scientific personnel at the discretion of the Cruise Leader. All of the necessary equipment will be supplied and operated by scientific personnel. <u>1.10 Oceanography</u> - Oceanographic sampling will be done by the oceanographers and other designated scientists, while underway during the day. 1.10.1 XBT Drops - There will be three XBT drops per day, at 0900, 1200 and 1500 hours local ship time, or as requested by the Cruise Leader. The XBTs will be conducted and provided by scientific personnel. If the vessel is stopped at the scheduled launch time, the drop will be delayed until the ship is again underway. If the vessel is not going to move within half an hour, the scientist performing the drop should be notified and the drop will be delayed or canceled, at the discretion of the Cruise Leader. <u>1.10.2 Surface Water Samples</u> - A surface water sample for chlorophyll *a* analysis and a bucket temperature will be taken at 0900, 1200, 1500 and 1800 hours local ship time daily. 1.10.3 Thermosalinograph Sampling - The ship will provide and maintain a thermosalinograph (TSG), which is calibrated and in working order, for continuous measurement of surface water temperature and salinity. A backup unit (calibrated and in working order) will also be provided by the vessel and will remain aboard during the cruise. The Scientific Computing System (SCS) will serve as the main data collection system. The oceanographer will provide the ship's Operations Officer and Electronics Technician with detailed SCS acquisition information before departure and a member of the scientific party sailing on the initial transit will provide additional technical support. The SCS data acquisition will be stopped and restarted weekly so the data files can be backed up and checked for errors. All SCS and SeaBird raw data will be provided to the SWFSC oceanographer following each leg of the cruise. ### 2.0 NIGHT OPERATIONS A chronological record of oceanographic and net tow stations will be kept by the ship (Marine Operations Log) with dates and times in GMT. The ship will provide a copy of the electronic marine operations log (with the cruise Weather Log and SCS data) to the SWFSC oceanographer at the completion of the cruise. The main SeaBird CTD system will be provided, maintained and operated by the scientific party. The collection of oceanographic data, samples and their processing will be conducted by the scientific party. The crew of the vessel will operate all deck equipment and will be responsible for the termination (and any necessary reterminations) of the CTD cable pigtail (provided by the scientific party) to the conducting cable of the winch. The ship shall provide a complete backup system, consisting of a frame with weights, a 12-place rosette with bottles, a deck unit, and a SeaBird 9/11+ CTD with conductivity and temperature sensors. All instruments, their spares and spare parts provided by the ship must be maintained in working order and, if applicable, have current calibrations (within the previous 12 months). - 2.1 CTD Stations Weather permitting, between one and two CTD stations will be occupied each night; an evening cast after the end of effort (unless the ship will resume effort within 10 nm the next morning), and a pre-dawn cast. CTD data and seawater samples will be collected using a SeaBird 9/11+ CTD with rosette (General Oceanics) and Niskin bottles fitted with silicone tubing and o-rings (supplied by oceanographer). All casts are to 1000 m, with the descent rate at 30m/min for the first 100m of the cast, then 60m/min after that, including the upcast between bottles. From each cast, chlorophyll samples (to 200 m) and salinity samples (500 and 1000 m or bottom) will be collected and processed on board. The 265ml chlorophyll samples will be filtered onto GF/F filters, placed in 10ml of 90% acetone, refrigerated for 24 hours, and then analyzed on a Turner Designs model 10AU field fluorometer. Nutrient samples (0 500 m) will be collected, frozen and stored on board. Cast times are subject to change since sunrise and sunset will vary during the cruise. Additional CTD stations may be requested by the Cruise Leader in areas of special interest. - 2.1.1 Pre-daylight Cast The morning cast (1000m) will begin approximately one and one-half hours prior to sunrise. This exact starting time will be determined the evening before, by the FOO or Deck Officer. The time should not be changed more than 15 min. from the previous day, even if sunrise changes more than this. This schedule may be modified by the oceanographer. Niskin bottle water samples will be collected at seven light depths and five additional standard depths, between the surface and 1000 m. These depths will be determined just prior to each cast by entering the ship's position into a computer program. From each cast, chlorophyll samples (too 200m) and salinity samples (2 to 6 samples per cast, as least 500 and 1000m or bottom) will be collected and processed on board. The 265 ml chlorophyll samples will be filtered onto GF/F filters, placed in 10ml of 90% acetone, refrigerated for 24 hours and then analyzed on a Turner Designs model 10AU field fluorometer. Nutrient samples (0-50m) will be collected, frozen and stored on board. Primary productivity will be measured by radioactively labeled carbon uptake methods. Seven samples taken from Niskin bottles #1 through #7 will be spiked with ¹⁴C, incubated on deck for 24 hours, filtered and stored for later analysis at the SWFSC. The Niskin bottles (#1-7) will be rinsed after each cast and acid-washed at the end of each leg. In San Diego, the oceanographers will be trained by SWFSC personnel in the use of radioactive material prior to departure. A copy of the SWFSC's NRC license for the use of radioisotopes will be kept on board. All radioactive waste will be stored in secured drums and boxes, and returned to San Diego (i.e. no disposal of radioactive material at sea). - 2.1.2 Post Effort Cast An evening CTD cast, to 1000m may be conducted after effort if the ship will move >10 nm overnight. The exact time will be determined by the Deck Officer (by 1800 local ship time that day). Bottle samples will be collected from 12 standard depths (0, 20, 40, 60, 80, 100, 120, 140, 170, 200, 500, 1000 meters). Samples for chlorophyll, nutrients and salts will be taken as listed above (except the addition of four salinity samples taken from every other evening cast). - <u>2.2 Net Sampling</u> Net tows will be conducted by the scientific party with the assistance of a winch operator from the vessel. The schedule for these tows may vary by leg and may need to be modified by the Cruise Leader. - 2.2.1 Bongo Tow An oblique bongo tow will be conducted after the evening CTD in darkness, or if no evening CTD is conducted, the tow will occur a minimum of one hour after sunset. Both nets will be 505 micron mesh and will be towed for 15 minutes (45 minute station time), to a depth of 200 m (wire out 300m on starboard hydro winch). The samples will be preserved in formalin or frozen (isotope analysis), labeled and stored in containers provided by the SWFSC until the vessel returns to San Diego. The second cod end of the bongo (port side) will only be attached once per week for isotope samples. - <u>2.2.1.1 Samples for Leatherback Turtle Diet Isotope Project</u> The gelatinous contents of the second cod end of the bongo will be placed in whirl-paks, labeled, and stored frozen for later stable isotopic analysis. J. Seminoff (SWFSC) will provide supplies to label and store these samples. - 2.3 Transit When scientific operations are complete for the night, the ship will resume course and proceed along the trackline, until it is necessary to stop and position the ship for the morning (pre-daylight) CTD station. It is estimated that the ship will need to transit between five and 100 nm per night. The Cruise Leader must have the flexibility to determine the transit speed on a daily basis, depending on planned scientific operations. # 3.0 SCIENTIFIC PERSONNEL 3.1 Chief Scientist - The Chief Scientist is Dr. Karin A. Forney, SWFSC, at phone (831) 420-3908. The Cruise Leader is the authorized representative of the Chief Scientist, with all the designated powers and responsibilities of the Chief Scientist. The Chief Scientist is authorized to alter
the scientific portion of this cruise plan with the concurrence of the Commanding Officer, provided that the proposed changes will not: (1) jeopardize the safety of personnel or the ship, (2) exceed the time allotted for the cruise, (3) result in undue additional expense, or (4) change the general intent of the project. - 3.2 Participating Scientists Please see Appendix 3. - <u>3.3 Personnel Switches</u> For all legs, the incoming scientific personnel will board the ship on the day of its arrival in port and the outgoing personnel will stay in a hotel or make other plans. - <u>3.4 Government Identification</u> Each member of the scientific party will have a government identification card. - 3.5 Medical Forms All scientific personnel will complete a NOAA Health Services Questionnaire (NHSQ) prior to embarking, as per NC Instruction 6000. This form will be routed through MOP Health Services for approval 30 days prior to the cruise. #### 4.0 EQUIPMENT # 4.1 Supplied by Scientific Party: - 1. Nine 7x50 hand-held binoculars - 2. Four 25x150 binoculars and stands - 3. One 20x60 hand-held gyro-stabilized binoculars - 4. Three observer chairs for flying bridge - 5. Wooden decking for flying bridge - 6. Video camera and tapes - 7. Two Digital SLR cameras, and one 35mm camera with lenses and 35mm film - 8. Three handheld radios - 9. Two to three laptop computers for scientific party e-mail use, one for the Cruise Leader, One for the photo-ID team, and one for the biopsy team - 10. Two desktop computers mounted in the SIC room with CAT5 KVM extension units at CPUs and at remote console units on the flying bridge - 11. Portable GPS component - 12. Crossbows, biopsy darts and tips, sample vials and storage solution (EtOH) with MSDS - 13. Two liquid nitrogen tanks (one 70 liter and one 34 liter) for biopsy sample preservation with MSDS - 14. Rifles, 9mm and .22 caliber blank charges - 15. One notebook computer for biopsy data entry and two printers: a small deskjet and a thermal label printer - 16. Two long-handled dip nets and sample containers - 17. Formalin and sodium borate - 18. Bongo frame and nets (including spare frame and nets) - 19. Glass sample containers with lids for net tow samples, pint (9 boxes), quart (5 boxes) and gallon (1 box/4ea) - 20. XBT probes (Deep Blues) 35 cases to be stored in two fish boxes and lab spaces - 21. Two computers for oceanographic data processing, acoustic (EK500) data acquisition and one spare - 22. Fluorometer (TD10AU) and one backup (TD10) for discrete chlorophyll a analysis - 23. Lab apparatus, logs and supplies for discrete chlorophyll a analysis - 24. Wormley standard seawater vials for salinometer calibration (55 vials) - 25. SeaBird 9/11+CTD system including G.O. rosette and 1.7 liter Niskin bottles (15) - 26. Salinometer (Portasal 8410) to use as primary salinometer - 27. Salinity sample bottles, square w/plastic insert beneath screw cap (52 ea. -2 cases of 24 plus 4 spares) - 28. Acetone, B-phenethylamine (mixed in cocktail), scintillation cocktail, hydrochloric acid, Triton x-100 - 29. ¹⁴C-bicarbonate (14 mCi total) and copy of NRC Materials License 04-29022-01 - 30. Primary productivity incubator (approx. 2' x 2' box, 48" high) with 2 hoses (25') for - saltwater input and drainage overboard - 31. Nutrient and productivity sample vials - 32. Small refrigerator for ¹⁴C stock solution and chlorophyll *a* extraction - 33. Bucket thermometer holder and thermometer (and 2 spares) - 34. Safety (MSDS's) and clean up materials for ¹⁴C and all chemicals, incl. a Geiger counter - 35. Oceanographic data logs and log books - 36. Fish boxes, three for storage including two for XBTs - 37. Two and one-half boxes of approximately 48 sonobuoys each - 38. One sonobuoy receiver - 39. DAT recorder and two laptop computers for acoustic monitoring - 40. Permits for specimen collection - 41. Computer data storage media (diskettes, CDs, etc.) - 42. 5 reams of paper - 43. "RESEARCH" Banner for prominent display in the State Waters of Washington - 4.2 Supplied by the Ship We request the following systems and their associated support services, sufficient consumables, back-up units, and on-site spares. All measurement instruments are assumed to have current calibrations and we request that all pertinent calibration information be included in the data package. - 1. Insulated CAT5 cable running from location site for CPUs to the flying bridge consoles. - 2. Power, ship's GPS, and ship's SCS connections to CPUs running the flying bridge consoles (Please note that it is very important that all science computers be connected to the same ship's GPS.) - 3. Canopy on flying bridge - 4. Three handheld radios (as spares) - 5. Small boat, including spare parts, for biopsy sampling, photography, seabird collection and marine turtle research - 6. Deck lighting for dipnetting - 7. Freezer space for water (walk-in and upright freezers) and biological samples (-80°) - 8. Termination for SeaBird CTD cable (including Chinese finger and shackle) - 9. Back-up SeaBird CTD, deck unit, rosette, frame with weights and 12 Niskin bottles (any size) - 10. Oceanographic winch with minimum 1500m of .322" conducting wire, terminated to CTD - 11. Hydrographic winch with minimum 400m cable (1/4" to 3/8" dia.) for net tows - 12. Bottom depth checking during CTD casts and net tows in depths less than 2000m. - 13. SeaBird thermosalinograph (SBE45) and connection to SCS - 14. Sippican XBT launcher (prefer aft deck location) and connection to SEAS/Sippican software - 15. Fume Hood (located in port lab, port counter next to refer) - 16. Storage space on aft deck for 18 boxes of XBTs (in 2 fish boxes 48"x44"x30") and 17 boxes inside the ship (main or aft laboratories) - 17. Scientific Computing System for data collection - 18. Simrad EQ50 echosound and input cables in SIC room - 19. Simrad EK500 echo sounder and input cables - 20. Constant temperature room (20-22° C) - 21. Salinity sample bottles (48 each 2 cases of 24) note: currently at SWFSC - 22. Clean rust-free seawater for primary productivity incubator on boat deck - 23. Space for primary productivity incubator (2'x2') on fantail, port side - 24. Counter space for SWFSC-supplied oceanographic computers and connections to network - 25. Hook-up (CTD) and counter spaces for SWFSC-supplied oceanographic computer - 26. Deck space for two bongo net frames (primary with nets attached and one spare frame) - 27. RDI 150kHz ADCP and data acquisition system - 28. Marine Operations and Deck Log (electronic)/Weather Observation sheets, filled out by Deck Officers - 29. Installation of SWFSC-supplied sonobuoy antenna and coax cable - 30. Copy Machine - 31. Additional email computer for scientific email use in dry Lab - 32. Network access to a printer for biopsy sampling computer <u>4.3 Installation and Maintenance</u> - Prior to departure from San Diego the Chief Scientist and members of the scientific party may board the vessel, with permission of the Commanding Officer, to test survey equipment and environmental sensors, set up equipment and assemble and modify wooden decking on flying bridge. The Scientific Collecting Permit for the State of Washington requires that vessels engaged in collection activities display a sign "RESEARCH," readable at 100 feet to the unaided vision. The scientific party will provide the banner and requests ship personnel to assist in the proper placement of the sign. 4.4 Radioisotopes - Small amounts of ¹⁴C radioisotope will be used in the primary productivity experiments to be conducted within the oceanographic laboratory of *David Starr Jordan* and in a labeled tank on the aft deck. The use of these radioisotopes is authorized by, and will be in accordance with, the conditions of U.S. Nuclear Regulatory Commission, under the State of California Radioactive Materials License number 04-29022-01, issued to SWFSC. The Application for Authorization to use Radioactive Material on NOAA Ships will be provided to the Pacific Marine Center according to the current NOAA Radioactive Material policy. Valerie Andreassi and Candice Hall are Authorized Users for radioisotopes. In accordance with this license, these radioactive materials are authorized for use at sea without geographic restriction. A copy of the license will be carried aboard the ship. The Cruise Leader will ensure that a wipe test of all areas and surfaces exposed to chemicals that contain ¹⁴C is conducted by oceanographic personnel at the end of each leg, after any spillage, and after the cruise. The results of this wipe test shall be forwarded to the Director, Marine Operations Center - Pacific and Commanding Officer, NOAA Ship *David Starr Jordan*. The Chief Scientist shall submit operating and emergency procedures prior to commencing the project. These should include instructions on handling, controlling access to the material, monitoring laboratory contamination, providing notification requirements, keeping records and decontaminating facilities and personnel. 4.5 Hazardous Materials - The Chief Scientist shall be responsible for complying with MOCDOC 15, Fleet Environmental Compliance #07, Hazardous Material and Hazardous Waste Management Requirements for Visiting Scientists, released July 2002. The MOCDOC web site address is: http://205.156.48.106/. By Federal regulations and NOAA Marine and Aviation Operations policy, the ship may not sail without a complete inventory of all hazardous materials by name and the anticipated quantity brought aboard, MSDS and appropriate neutralizing agents, buffers, and/or absorbents in amounts adequate to address spills of a size equal to the amount of chemicals brought aboard and a chemical hygiene plan. The amount of hazardous material arriving and leaving the vessel shall be accounted for by the Chief Scientist. <u>4.6 Scientific Computing System (SCS)</u> - If the SCS goes down for any reason, the ship must manually restart the WINDACS_DSJ event in addition to the
other events. ### 5.0 DATA RESPONSIBILITIES - 5.1 Collection of Data The Chief Scientist will receive all original data related to the project. The Chief Scientist will in turn furnish the Commanding Officer with a complete inventory listing of all data gathered by the scientific party, detailing types of operations and quantities of data prior to departing the ship. All data gathered by the vessel's personnel that are desired by the Chief Scientist will be released to her, including supplementary data specimens and photos gathered by the scientific crew. - <u>5.2 Dissemination of Data</u> The Chief Scientist is responsible for the quality assurance, disposition and archiving of data and specimens collected aboard the ship. The Chief Scientist is also responsible for the dissemination of copies of these data to cruise participants and to any other requesters. The SWFSC cruise report will be submitted according to SWFSC procedures to appropriate persons and groups. - <u>5.3 Evaluation Form</u> The Chief Scientist will complete the Ship Operations Evaluation Form and forward it to the Office of Marine and Aviation Operations. The Commanding Officer will provide this form. # 6.0 ADDITIONAL INVESTIGATIONS AND PROJECTS <u>6.1 Ancillary Projects</u> - Ancillary projects are secondary to the objectives of the cruise, should be treated as additional investigations, do not have representation aboard, and are accomplished by the ship's force. Ancillary tasks will be accomplished in accordance with the NOAA Fleet Standing Ancillary Instructions. Any additional work will be conducted so as not to interfere with operations as outlined in these instructions. The Chief Scientist will be responsible for determining the priority of additional work relative to the primary project with approval from the Commanding Officer. ## 7.0 COMMUNICATIONS <u>7.1 Radios</u> - The Cruise Leader or designee may request, from the Commanding Officer, the use of radio transceivers aboard the ship to communicate with other vessels and aircraft, if necessary. SWFSC will supply their own handheld radios for intra-ship communication and communication with the small boats. However, the Cruise Leader may request the use of the ship's handheld radios if the supplied radios should fail. - 7.2 Telephone The Cruise Leader or designee may require access to the ship's INMARSAT or cellular telephone systems with permission from the Commanding Officer. The Commanding Officer will provide the Cruise Leader with a log of all INMARSAT calls made from the ship for SWFSC business at the end of each leg. In accordance with the Communications Reimbursement Policy, SWFSC will pay these charges via a transfer of funds from SWFSC to the ship. - 7.3 Electronic Mail All members of the scientific party will have access to e-mail for communications with persons not aboard the ship. The amount of such communication traffic will be determined by the Chief Scientist. - 7.4 Routine Reports The Cruise Leader will submit a weekly cruise report, along with time and attendance for the scientific party, to the Survey Coordinator each Thursday during the cruise via e-mail or, if e-mail is not functioning properly, via fax. The Survey Coordinator at SWFSC (Surveycoordinator.SWFSC@noaa.gov) will be on the distribution list for the ship's noon position reports. ### 8.0 MISCELLANEOUS - <u>8.1 Pre-cruise Meeting</u> A pre-cruise meeting between the Chief Scientist (and her staff) and the Commanding Officer (and his staff) will be held prior to the start of the cruise to identify operational requirements (*i.e.*, overtime, modifications, repairs or procurements). The date and time for this meeting is yet to be scheduled. - <u>8.2 Underway Meetings</u> Meetings between the Commanding Officer (and other officers) and the Cruise Leader should occur at the beginning and end of each leg to discuss and solve any problems or changes that may arise. Additional meetings should occur as needed. <u>8.3 Debrief</u> - A post-cruise debriefing will be held between the Chief Scientist and the Commanding Officer. If serious problems are identified, the Commanding Officer shall notify the Marine Operations Center, Pacific, in the most direct means available. The Chief Scientist shall document identified problems in the Ship Operations Evaluation Form. The time and date for the debriefing meeting will be determined toward the end of the cruise. 8.4 Time and Attendance - Time and Attendance for scientific personnel will be filled out by the SWFSC timekeeper while the ship is at sea, based on information transmitted by the Cruise Leader to the Survey Coordinator. Scheduled overtime is authorized for Saturdays, Sundays and holidays. Irregular overtime will be authorized by the Cruise Leader as required. SWFSC personnel are authorized per diem at the rate of \$3.00 per day to be paid via a travel voucher at the termination of the cruise. Task Number 30-51-0002-00-00-00-00-C8LAM54-P21 will pay for per diem and overtime for any SWFSC permanent, term or temporary employees: Cruise Leaders, Marine Mammal and Seabird Observers, and Oceanographers. Regular salary for these personnel will be paid by the CYOP task from which they are normally paid. Time and Attendance for Aquatic Farms contract employees will be based upon a predetermined schedule. If events of the cruise alter the planned schedule, the Cruise Leader will notify the Survey Coordinator, and appropriate changes will be brought to the attention of Aquatic Farms. <u>8.5 Navigation</u> - Primary control will be GPS, also dead reckoning based on visual bearings and radar ranges when possible. <u>8.6 Scientific Spaces</u> - The Cruise Leader shall be responsible for the proper upkeep and cleaning of all spaces assigned to the scientific party, both laboratory and living spaces, throughout the cruise. The Cruise Leader or Chief Scientist will make berthing assignments for scientific personnel on a per-leg basis, with approval of the Commanding Officer. For further information contact the Survey Coordinator, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8604 La Jolla Shores Drive, La Jolla, CA 92037; cruise and project can be found at the project's website http://swfsc.nmfs.noaa.gov/PRD/PROJECTS/CSCAPE/default.htm | Prepared by: _ | Annette Henry
Survey Coordinator, SWFSC | Dated: 33 July 05 | |----------------|--|-----------------------------| | | Dr. Karin Forney Chief Scientist, SWESC | Dated: 25 July 05 | | Approved by: | SLI | Dated: 7/26/5 | | Approved by: | Captain John C. Clary | Dated: | | | Commanding Officer of the Marine | Operations Center - Pacific | Appendix I. Waypoints for Legs 2, 3 and 4 as shown in Appendix II, Figure 1. | Leg | Waypoint | Start Lat | Start Lon | Lat | Lon | Dist (NM) | |-------------|----------|-----------|-----------|-----------|------------|-------------| | 2 | 1 | 32 87 N | 117 27 W | 32 52.2 N | 117 16.2 W | - | | 2 | 2 | 35 25 N | 128 03 W | 35 15.0 N | 128 01.8 W | 553.26 | | 2 | 3 | 39 40 N | 126 56 W | 39 24.0 N | 126 33.6 W | 258.68 | | 2 | 4 | 39 73 N | 128 09 W | 39 43.8 N | 128 05.4 W | 73.49 | | 2 | 5 | 41 08 N | 127 57 W | 41 04.8 N | 127 34.2 W | 84.41 | | 2 | 6 | 41 77 N | 131 00 W | 41 46.2 N | 131 00.0 W | 159.76 | | 2 | 7 | 43 27 N | 131 00 W | 43 16.2 N | 131 00.0 W | 90.00 | | 2 | 8 | 42 50 N | 127 05 W | 42 30.0 N | 127 03.0 W | 179.68 | | 2 | 9 | 45 31 N | 126 06 W | 45 18.6 N | 126 03.6 W | 173.94 | | 2 | 10 | 44 93 N | 124 03 W | 44 55.8 N | 124 01.8 W | 88.92 | | Total Leg 2 | | | | | 1,662.14 | Total Leg 2 | | _ | | | | | | | | 3 | 1 | 43 45 N | 124 28 W | 43 27.0 N | 124 16.8 W | - | | 3 | 2 | 44 72 N | 131 00 W | 44 43.2 N | 131 00.0 W | 299.38 | | 3 | 3 | 45 47 N | 131 00 W | 45 28.2 N | 131 00.0 W | 45.00 | | 3 | 4 | 45 85 N | 130 83 W | 45 51.0 N | 130 49.8 W | 23.89 | | 3 | 5 | 46 08 N | 130 31 W | 46 04.8 N | 130 18.6 W | 25.71 | | 3 | 6 | 45 89 N | 129 30 W | 45 53.4 N | 129 18.0 W | 43.62 | | 3 | 7 | 40 97 N | 131 00 W | 40 58.2 N | 131 00.0 W | 304.33 | | 3 | 8 | 40 32 N | 131 00 W | 40 19.2 N | 131 00.0 W | 39.00 | | 3 | 9 | 39 71 N | 128 07 W | 39 42.6 N | 128 04.2 W | 139.52 | | 3 | 10 | 36 93 N | 129 07 W | 36 55.8 N | 129 04.2 W | 173.31 | | 3 | 11 | 36 28 N | 125 97 W | 36 16.8 N | 125 58.2 W | 154.32 | | 3 | 12 | 41 68 N | 124 17 W | 41 40.8 N | 124 10.2 W | 334.68 | | Total Leg 3 | | | | | 1,582.76 | Total Leg 3 | | | | | | | | | | 4 | 1 | 40 45 N | 124 43 W | 40 27.0 N | 124 25.8 W | - | | 4 | 2 | 41 08 N | 127 58 W | 41 04.8 N | 127 34.8 W | 148.04 | | 4 | 3 | 42 49 N | 127 08 W | 42 29.4 N | 127 04.8 W | 87.51 | | 4 | 4 | 42 80 N | 128 66 W | 42 48.0 N | 128 39.6 W | 72.17 | | 4 | 5 | 38 67 N | 130 13 W | 38 40.2 N | 130 07.8 W | 256.64 | | 4 | 6 | 37 38 N | 123 96 W | 37 22.8 N | 123 57.6 W | 301.65 | | 4 | 7 | 31 83 N | 125 78 W | 31 49.8 N | 125 46.8 W | 344.89 | | 4 | 8 | 30 72 N | 121 11 W | 30 43.2 N | 121 06.6 W | 248.55 | | 4 | 9 | 31 13 N | 119 40 W | 31 07.8 N | 119 24.0 W | 91.39 | | 4 | 10 | 34 00 N | 118 50 W | 34 00.0 N | 118 30.0 W | 178.11 | | Total Leg 4 | | | | | 1,728.95 | Total Leg 4 | The primary set of transect lines (Appendix II, Figure 2) are defined by the following lines. The order in which these lines are to be completed will be determined prior to sailing by the Cruise Leader. Nearshore endpoints should terminate as close to shore as possible given navigation safety considerations. | | East Endpoint | | | | West E | ndpoint | | | |----------|---------------|---------|----------|----------|---------|---------|----------|----------| | Transect | Lat-Deg | Lat-Min | Long-Deg | Long-Min | Lat-Deg | Lat-Min | Long-Deg | Long-Min | | 13 | 30 | 43.0 | 121 | 06.5 | 31 | 46.0 | 125 | 40.0 | | 14 | 31 | 37.0 | 118 | 26.0 | 33 | 29.0 | 126 | 54.0 | | 15 | 32 | 52.0 | 117 | 16.0 | 35 | 15.0 | 128 | 02.0 | | 16 |
35 | 12.0 | 120 | 50.0 | 36 | 56.0 | 129 | 04.0 | | 17 | 37 | 01.0 | 122 | 11.0 | 38 | 40.0 | 130 | 08.0 | | 18 | 38 | 46.0 | 123 | 30.0 | 40 | 19.0 | 131 | 0.00 | | 19 | 40 | 27.0 | 124 | 26.0 | 41 | 46.0 | 131 | 0.00 | | 20 | 41 | 55.0 | 124 | 13.0 | 43 | 16.0 | 131 | 0.00 | | 21 | 43 | 27.0 | 124 | 17.0 | 44 | 43.0 | 131 | 0.00 | | 22 | 44 | 56.0 | 124 | 02.0 | 46 | 05.0 | 130 | 18.5 | | 23 | 46 | 26.0 | 124 | 03.0 | 47 | 08.5 | 128 | 00.5 | | 24 | 48 | 02.0 | 124 | 41.0 | 48 | 12.0 | 125 | 41.0 | | I | 34 | 0.00 | 118 | 30.0 | 31 | 0.80 | 119 | 24.0 | | m | 34 | 27.0 | 120 | 0.00 | 30 | 43.0 | 121 | 07.0 | | n | 35 | 40.0 | 121 | 15.0 | 30 | 12.0 | 123 | 02.0 | | 0 | 37 | 11.0 | 122 | 25.0 | 30 | 51.0 | 124 | 29.0 | | р | 38 | 46.0 | 123 | 30.0 | 31 | 50.0 | 125 | 47.0 | | q | 41 | 41.0 | 124 | 10.0 | 33 | 29.0 | 126 | 54.0 | | r | 46 | 26.0 | 124 | 03.0 | 35 | 15.0 | 128 | 02.0 | | S | 48 | 28.0 | 124 | 55.0 | 36 | 56.0 | 129 | 04.0 | | t | 47 | 38.0 | 126 | 55.5 | 38 | 40.0 | 130 | 0.80 | | u | 46 | 40.5 | 129 | 00.5 | 40 | 58.0 | 131 | 0.00 | | V | 45 | 51.0 | 130 | 50.0 | 45 | 28.0 | 131 | 0.00 | Additional, secondary transect lines may be completed in other areas, especially the National Marine Sanctuaries, at the cruise leader's discretion. Waypoints for these additional transects TBD. Appendix II - Figure 1. Drawing of tracklines for Legs 2, 3 and 4 for CSCAPE: # Appendix III – Scientific Personnel # David Starr Jordan - Leg 2: San Diego, CA to Newport, OR | Position | Name | Affiliation | | |--------------------------|-------------------|------------------|--| | Chief Scientist | Karin Forney | SWFSC | | | | Cornelia | | | | Senior Mammal Observer | Oedekoven | AFL | | | Senior Mammal Observer | Gary Friedrichsen | AFL | | | Senior Mammal Observer | Annie Douglas | AFL | | | Mammal Observer | Holly Fearnbach | AFL | | | Mammal Observer | Laura Morse | AFL | | | Mammal Observer | Tim O'Toole | AFL | | | Independent Observer | Jason Larese | AFL | | | Seabird Observer | Rich Pagen | AFL | | | Seabird Observer | Thomas Staudt | AFL | | | Oceanographer | Liz Zele | AFL | | | Oceanographer | Candice Hall | AFL | | | NMS Visiting Scientist | TBD | | | | Teacher-at-sea | Greta Lyons | Teacher-at-sea | | | Visiting Scientist/Other | Elizabeth Becker | UC Santa Barbara | | # David Starr Jordan – Leg 3: Newport, OR to Eureka, OR | Position | Name | Affiliation | |--------------------------|-------------------|----------------| | Chief Scientist | Susan Chivers | SWFSC | | | Cornelia | | | Senior Mammal Observer | Oedekoven | AFL | | Senior Mammal Observer | Gary Friedrichsen | AFL | | Senior Mammal Observer | Annie Douglas | AFL | | Mammal Observer | Holly Fearnbach | AFL | | Mammal Observer | Laura Morse | AFL | | Mammal Observer | Tim O'Toole | AFL | | Independent Observer | Mari Rosales | AFL | | Seabird Observer | Rich Pagen | AFL | | Seabird Observer | Thomas Staudt | AFL | | Oceanographer | Liz Zele | AFL | | Oceanographer | Candice Hall | AFL | | NMS Visiting Scientist | TBD | | | Teacher-at-sea | Maureen Barrett | Teacher-at-sea | | Visiting Scientist/Other | TBD | | David Starr Jordan – Leg 4: Eureka, OR to San Diego, CA | Position | Name | Affiliation | |--------------------------|-------------------|-------------| | Chief Scientist | Eric Archer | SWFSC | | | Cornelia | | | Senior Mammal Observer | Oedekoven | AFL | | Senior Mammal Observer | Gary Friedrichsen | AFL | | Senior Mammal Observer | Annie Douglas | AFL | | Mammal Observer | Holly Fearnbach | AFL | | Mammal Observer | Laura Morse | AFL | | Mammal Observer | Tim O'Toole | AFL | | Independent Observer | Shawn Noren | NRC | | Seabird Observer | Rich Pagen | AFL | | Seabird Observer | Thomas Staudt | AFL | | Oceanographer | Liz Zele | AFL | | Oceanographer | Candice Hall | AFL | | NMS Visiting Scientist | Jamie Hall | NMS | | Teacher-at-sea | TBD | | | Visiting Scientist/Other | TBD | | # David Starr Jordan – Leg 5: San Diego, CA to Astoria, OR | Position | Name | Affiliation | |--------------------------|--------------------|-------------| | Chief Scientist | Jim Carretta | SWFSC | | Senior Mammal Observer | Cornelia Oedekoven | AFL | | Senior Mammal Observer | Gary Friedrichsen | AFL | | Senior Mammal Observer | Kathy Hough | AFL | | Mammal Observer | Holly Fearnbach | AFL | | Mammal Observer | Laura Morse | AFL | | Mammal Observer | Tim O'Toole | AFL | | Independent Observer | Paula Olson | AFL | | Seabird Observer | Rich Pagen | AFL | | Seabird Observer | Thomas Staudt | AFL | | Oceanographer | Liz Zele | AFL | | Oceanographer | Candice Hall | AFL | | | Gabriella Serra- | | | NMS Visiting Scientist | Valente | AFL | | Teacher-at-sea | TBD | | | Visiting Scientist/Other | TBD | | David Starr Jordan – Leg 6: Astoria, OR to San Francisco, CA | Position | Name | Affiliation | |--------------------------|-------------------|-------------| | Chief Scientist | Lisa Ballance | SWFSC | | | Cornelia | | | Senior Mammal Observer | Oedekoven | AFL | | Senior Mammal Observer | Gary Friedrichsen | AFL | | Senior Mammal Observer | Annie Douglas | AFL | | Mammal Observer | Holly Fearnbach | AFL | | Mammal Observer | Laura Morse | AFL | | Mammal Observer | Tim O'Toole | AFL | | Independent Observer | Jim Gilpatrick | SWFSC | | Seabird Observer | Rich Pagen | AFL | | Seabird Observer | Thomas Staudt | AFL | | Oceanographer | Liz Zele | AFL | | Oceanographer | Candice Hall | AFL | | Teacher-at-sea | TBD | | | Visiting Scientist | Sarah Mesnick | SWFSC/SIO | | Visiting Scientist/Other | Nicole Hedrick | AFL | # David Starr Jordan – Leg 7: San Francisco, CA to San Diego, CA | Position | Name | Affiliation | |--------------------------|-------------------|-------------| | Chief Scientist | Karin Forney | SWFSC | | | Cornelia | | | Senior Mammal Observer | Oedekoven | AFL | | Senior Mammal Observer | Gary Friedrichsen | AFL | | Senior Mammal Observer | Annie Douglas | AFL | | Mammal Observer | Holly Fearnbach | AFL | | Mammal Observer | Laura Morse | AFL | | Mammal Observer | Tim O'Toole | AFL | | Independent Observer | Jim Gilpatrick | SWFSC | | Seabird Observer | Rich Pagen | AFL | | Seabird Observer | Thomas Staudt | AFL | | Oceanographer | Liz Zele | AFL | | Oceanographer | Candice Hall | AFL | | NMS Visiting Scientist | Shannon Lyday | NMS | | Teacher-at-sea | TBD | | | Visiting Scientist/Other | Beth Phillips | MLML | # UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE Southwest Fisheries Center 8604 La Jolla Shores Drive La Jolla, California 92038 19 May 2005 MEMORANDUM FOR: Commanding Officer, NOAA Ship David Starr JordanII FROM: Annette E. Henry Survey Coordinator, SWFSC THROUGH: Karin A. Forney Chief Scientist, CSCAPE Cruise 2005 SUBJECT: Statement of Intent to Use Small Boats, and Assessment of Risk for small boat missions during the Collaborative Survey of Cetacean Abundance and the Pelagic Ecosystem (CSCAPE) Cruise aboard NOAA Ship David Starr Jordan During the CSCAPE 2005 cruise, small boats will be necessary for the biopsy sampling and photography research projects while at sea. There are no island stops or surf zone landings planned for this cruise. Training will occur at anchorage off Harbor Island, San Diego Bay, CA during calibration of EK500 on 30 JUL 2005. #### Assessment of Risk: In addition to the general risks inherent in all small boat operations at sea, the greatest risks with small boat operations on this survey are likely to be: ### 1) Cold water operations - The CSCAPE 2005 cruise will include the waters off the coasts of California, Oregon and Washington, where water temperatures are cold. To increase the safety of those deploying in the small boats, the scientific party will provide Mustang suits to scientific crew, to be used at the discretion of the Command. ### 2) Launch and retrieval The greatest risks are likely to be during launching and retrieval. To mitigate this risk we are taking extensive time before the cruise to drill crew and scientists on safe launching and retrieval techniques. Training will occur at anchorage off Harbor Island, San Diego Bay, CA during calibration of EK500 on 30 JUL 2005 until all parties are satisfied that operations are as safe as possible. ## 3) Operations around whales - Although no whale researchers have been harmed by baleen whales, they are powerful animals and their potential to cause damage should not be ignored. To mitigate this risk we are hiring a scientist with extensive experience handling small boats around large whales. This scientist will be the primary vessel operator for whale biopsy and photo-ID missions on Leg 1b. This person will train ship's crew on safe methods for approaching large whales. ### 4) Cross-bow/firearm use Crossbows and rifle-powered dart guns will be used to biopsy whales. To mitigate this risk, our primary biopsy biologist has undergone over 4 weeks of at-sea training with one of the most experienced whale biopsy experts in the world. He will train others on safe use of these instruments. ### 5) Falls within the small boat - Falls are generally caused by an unexpected movement of the boat caused by wave action or by a sudden acceleration or deceleration by the cox'n. To mitigate this risk, we will require the cox'n to notify all occupants prior to a rapid change in course or speed. Prior to accelerating from a stop, the cox'n will ask all occupants if they are ready and will wait for a reply before proceeding. The cox'n will also be responsible for watching for rogue waves and for notifying occupants if the vessel is expected to take a sudden lurch. Addendum to Cruise Instructions Added on 26 August 2005 Approved by Larry Mordock, Operations Division, MOC-P and Lieutenant. Commander Alexander VonSaunder, NOAA Ship David Starr Jordan ### DS-05-07 Final Cruise Instructions Addendum 1: Argo Buoy Deployments.--Four Argo array buoys, part of the Global Climate Observing System/Global Ocean
Observing System (GCOS/GOOS) and part of the Climate Variability and Predictability Experiment (CLIVAR) and the Global Ocean Data Assimilation Experiment (GODAE), will be deployed by scientific personnel to help fill in the coverage gap off the western U.S. coast. Times and locations of deployment will be determined by the Cruise Leader in consultation with the Command. Buoys will be deployed off the stern by the scientific party after notifying the bridge. The buoys will be loaded in San Diego during the 01-05 October inport and secured in a weather protected area; they must remain stored horizontally.